Instructor: Vivian Meng

STAT 302 2023/24 Winter Term 2 Module 6 worksheet 1

New concepts

Continuous RV; uniform distribution; expected values; function of continuous RV

Thought experiment

Imagine the following setup: you take a perfect string of length l, put a coordinate system along its length, with the origin at one end. Next, imagine having to cut the string at a randomly selected location, in a way that any location is **equally likely** to be chosen. Let the random variable X represent the location of the cut.

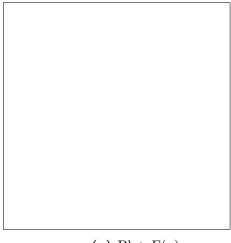
1. What do you think is the probability of the cut falling:

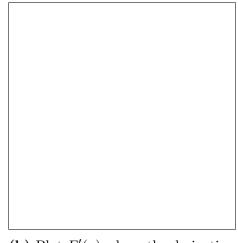
in the first half of the string? _____; in the first quarter of the string? _____; at a location that has negative value? _____; at a location greater than l?_____.

- 2. What is the general rule for the cut falling within a proportion a of its length, say within [0, al], where $a \in (0, 1]$? $P(0 \le X \le al) =$ _____.
- 3. In other words, prob. of the cut falling at a location between $-\infty$ to c (inclusive) is:

$$F(c) = P(X \le c) = \begin{cases} , c < 0 \\ , 0 \le c < l \end{cases}$$

$$, c \ge l$$





(a) Plot F(a)

(b) Plot F'(a) where the derivative exists

4. How does $P(X \in [0, 1/2])$ compare to $P(X \in [0, 1/2))$?

Continuous uniform distribution over [a, b]

A RV X with continuous uniform distribution has density function that is uniform (i.e. non-zero constant) over the interval [a,b] on the real line and 0 everywhere else. We say $X \sim \mathcal{U}(a,b)$.

Q1. Find f(x), the probability density function (pdf) of a $\mathcal{U}(a,b)$ RV.

Given a density function, we can find the corresponding CDF because ______.

Q2. Find F(x), the CDF of a $\mathcal{U}(a,b)$ RV.

Q3. Suppose $X \sim \mathcal{U}(0, 10)$. Find the following using the CDF

- (a) P(X > 3)
- (b) $P(2 \le X < 12)$
- (c) P(X > 5|X > 2)

Expected values and probabilities of events

In general, for continuous RVs, calculation of expected values and probabilities of event $X \in B$, B being some interval on the real line, is similar to the calculation in the discrete case except that we replace summation with integration:

	Discrete	Continuous
F(x)	$\sum_{k\leq x}f\left(k\right)$	
E[g(x)]	$\sum_{k} g(k) f(k)$	
$P(X \in B)$	$\sum_{k \in B} f(k)$	

Q4. For $X \sim \mathcal{U}(a, b)$, calculate E[X]

For practice, try to calculate $E[X^2]$ and Var(X) for a $\mathcal{U}(a,b)$ RV at home.

Transformations of a continuous RV

Let X be a RV with a known CDF $F_X(x)$ and Y = g(X). We want to find CDF and pdf of Y.

- When g is strictly monotonic, the inverse function g^{-1} exists. This makes getting the CDF of Y, $F_Y(y)$ relatively easy.
 - **step 1.** Identify the range of Y. This informs us when $F_Y(y)$ will be 0 and when it will be 1.
 - step 2. Find $F_Y(y)$ by noting: if g strictly monotonic increasing,

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) =$$

if g strictly monotonic decreasing,

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) =$$

- step 3. Find pdf $f_y(y)$ by noting $f_y(y) = F'(y)$
- But what if g not strictly monotonic? Then we need to think about the shape of the function, maybe consider separating the domain of $g(\cdot)$ into regions where the function is strictly monotonic within each region...

Q5.	Let X	$\sim \mathcal{U}(-1,1)$) Find th	ne cdf an	d pdf of Y	$X = X^2$